
Continuum of extended states in the spectrum of a one-dimensional random potential

Alberto Rodríguez* and Jose M. Cerveró
Física Teórica, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain

�Received 22 August 2005; revised manuscript received 17 October 2005; published 30 November 2005�

We describe a one-dimensional disordered system, based on the Pöschl-Teller potential, that exhibits a
continuum of extended states which is independent of the random or correlated character of the sequence and
of the length of the system. The delocalization of the electronic states occurs in the whole positive spectrum
where the system shows a perfect transmission.
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Since the work of Anderson1 localization has been con-
sidered as a central tenet of the theory of disordered systems.
Its significance as an unavoidable consequence of the pres-
ence of disorder in the systems was later enhanced by the
results of the scaling theory2 that originially predicted the
localization of all electronic states for any degree of disorder
in two-dimensional �2D� and one-dimensional �1D� struc-
tures while the existence of a metal to insulator transition
�MIT� was permitted in three-dimensional �3D� systems.3 It
was subsequently shown that in several configurations of 2D
electron and hole systems a MIT could occur as a function of
the density of carriers4 or as a result of an applied magnetic
field.5 Such experimental observations meant the reopening
of the localization problem and the scaling theory was en-
larged to describe these new results. In one-dimensional sys-
tems the appearance of disordered models exhibiting short-
range and long-range correlations also showed that extended
states can exist in the spectrum of a 1D disordered structure.
Short-range correlations lead to the emergence of isolated
extended states which constitute a zero measure set of the
spectrum in the thermodynamic limit,6–8 while long-range
correlations give rise to the appearance of a phase of appar-
ently extended states and therefore a qualitative MIT in 1D.9

Correlations can alter the random character of the structures
and improve noticeably their transport properties as it has
been experimentally verified in different systems such as
semiconductor superlattices10 or microwave guides.11 In this
work we go one step further and describe a one-dimensional
disordered system, based on the Pöschl-Teller potential, that
exhibits a continuum of extended states which is independent
of the random or correlated character of the sequence and of
the length of the system. We then enlarge the family of dis-
ordered models showing a perfect transmission within a con-
tinuum energy interval, but this time the total transparency is
provided by the potential itself and it is not due to the exis-
tence of statistical correlations in the disordered sequence.

Let us consider the general Pöschl-Teller potential, shown
in Fig. 1, and given by

V�x� =
�2�2

2m

V

cosh2��x�
. �1�

It resembles the form of an atomic well or barrier depending
on the sign of V, a dimensionless parameter that together
with � determines the height or depth of the potential. The

parameter �, with units of inverse of length, controls the
half-width of the potential which reads d1/2
=2�−1 arccosh �2. The larger � is, the narrower and deeper
the potential becomes. The Schrödinger equation for the
Pöschl-Teller potential is analytically solvable and its solu-
tions are well known.12,13 The asymptotic transmission ma-
trix for this potential has been obtained previously by the
authors14 and it reads

M = �ei��1 + w2 − iw

iw e−i��1 + w2� , �2�

where

w =
sin��b�

sinh��k/��
, b =

1

2
+�1

4
− V , �3�

� =
�

2
+ arg� �2�ik/��

��b + ik/����1 − b + ik/��� , �4�

k=�2mE /� and ��z� is the complex Euler gamma function,
also w is always a real quantity as can be seen in its alterna-
tive definition w=cosh���V−1/4� / sinh�k� /��. The dimen-
sionless amplitude in terms of b reads V=−b�b−1� which is
the usual form found in the literature. Let us remark that the
above expressions are only valid for positive energies �i.e.,
k�R	. From �2� the asymptotic probability of transmission
is T= �1+w2�−1. To build a chain with the potentials de-
scribed, one must do the approximation of considering that
each potential unit has a finite range. Hence a cutoff must be
included in the Pöschl-Teller potential. Using this approxi-
mation one obtains matrices suitable to be arranged in linear
chains, applying the composition technique described in Ref.
14. Let us suppose that the potential is appreciable only in-

FIG. 1. Pöschl-Teller potential defined in Eq. �1�.
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side the interval �−dL ,dR	, as shown in Fig. 1. Outside this
interval the wave function is assumed to be a superposition
of the free particle solutions. Then the transmission matrix
for the cutoff potential reads

M = �ei��+k�dR+dL�	�1 + w2 − iweik�dR−dL�

iwe−ik�dR−dL� e−i��+k�dR+dL�	�1 + w2� . �5�

The cutoff matrix is the same as the asymptotic one plus an
extra phase term in the diagonal elements that accounts for
the total distance �dR+dL� during which the particle feels the
effect of the potential, and also an extra phase term in the
off-diagonal elements measuring the asymmetry of the cutoff
�dR−dL�. These phases are the key quantities since they will
be responsible for the interference processes that produce the
transmission patterns. In our case, due to the rapid decay of
the Pöschl-Teller potential, the cutoff distance admits very
reasonable values. In fact we have seen that for a sensible
wide range of the parameters � and V, one can take as a
minimum value for the cutoff distance d0=2d1/2
3.5/�
where d1/2 is the half-width. Taking dL,R�d0 the connection
procedure works really well, as we have checked in all cases
considered by comparing the analytical composition tech-
nique versus a numerical integration of the Schrödinger
equation for the global potential. The above matrices can be
used to obtain analytical expressions for the scattering am-
plitudes of different potential profiles including a few atoms
resembling molecular structures.14 In this work our main in-
terest is to consider the transmission matrix �5� to make a
continuous disordered model in the form of a large chain of
these potentials with random parameters. Let us consider
now the effects of uncorrelated disorder upon this particular
model. From �5� one is led to the following canonical rela-
tion among the values of the electronic states at contiguous
sites of the chain,

� j+1 = �S̄j + Sj−1
Kj

Kj−1
�� j −

Kj

Kj−1
� j−1, �6�

where

S̄j = − wj sin�k�dj
L − dj

R�	 + �1 + wj
2 cos�� j� , �7�

Sj = wj sin�k�dj
L − dj

R�	 + �1 + wj
2 cos�� j� , �8�

Kj = wj cos�k�dj
L − dj

R�	 + �1 + wj
2 sin�� j� , �9�

in terms of w and � defined in �3� and �4� and � j =k�dj
L

+dj
R�+� j. The amplitudes � j correspond to the value of the

state at the junction points of the potentials as shown in Fig.
2, and in this case each potential is determined by four pa-
rameters: dj

L, dj
R, � j, and Vj. The form of the canonical rela-

tion obtained from the transmission matrix coincides with
the Poincaré map derived by Sánchez and co-workers for
one-dimensional potentials;7 in fact, expression �6� is for-
mally independent of the potential model. The canonical
equation is essential to obtain the properties of the disordered
system in the thermodynamic limit. From the canonical rela-
tion, the relevant quantities of the disordered composite
Pöschl-Teller model such as density of states �DOS� and lo-

calization length can be numerically obtained in the thermo-
dynamic limit by using the functional equation formalism,
which has already been successfully applied to other disor-
dered models by the authors.8 The disordered compositions
of Pöschl-Teller potentials give rise to the emergence of ex-
citing properties such as fractal DOS, existence of different
types of isolated extended states in the spectrum, and the
appearance of bound states for the negative spectrum which
can be completely delocalized. A thorough study of all these
features will be reported elsewhere.15 This work is devoted
to describe the properties of the disordered system composed
of a particular type of Pöschl-Teller potentials: the resonant
wells. One characteristic feature of the potential �1� is that
T=1 for all energies whenever b is a real integer. Hence an
absolute resonant transmission occurs for potential wells
with V=−2,−6,−12,−20, . . . independently of the value of
�. The resonant wells correspond to potentials with an inte-
ger value of b	1. Since in this case w=0, the transmission
matrix for a resonant well becomes diagonal and its nonzero
elements are simply the phases e±i�j, that is, it is the trans-
mission matrix of a zero potential. The resonant well for
positive energies behaves as a zero potential with an effec-
tive length Leff�k��� j /k=� /k+ �dR+dL� that depends on the
energy. For a resonant well described by parameters
�d


L ,d

R ,�
 ,b
 it can be proved by induction using the prop-

erties of the gamma function that the following expression
holds,

�Leff

��� = �

�
�d

R + d


L�
��
/��

− 2 �
j=1

b
−1

arctan� �

j��
/���
+ �b
 − 1�� , �10�

where kLeff

�k���Leff


���, and the variable ��k /� is a di-
mensionless representation of the energy, and � is the refer-
ence value for the parameters ��
. Now let us consider a
disordered chain entirely composed of resonant wells with
different parameters. For positive energies the functions ap-
pearing in the canonical equation of the system �6� reduce to

S̄j �Sj =cos�kLeffj
�k�	 and Kj =sin�kLeffj

�k�	. It can be easily
checked that these functions define the canonical equation
for a zero potential where the wave function is evaluated at
different distances corresponding to the effective length of
each potential. It is then clear that the electronic states for all
energies remain extended in the disordered system. The
transmission of the whole structure is maximum for all en-
ergies since the system globally behaves as a zero potential.
Let us remark that the fully resonant behavior of the Pöschl-
Teller well, provided b
 is an integer, is independent of d


L,
d


R, and �
 as long as the minimum value for the cutoff

FIG. 2. Potential of a disordered Pöschl-Teller wire.
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distances is preserved. In fact, the real dimensional depth of
the well reads �2�


2V
 / �2m�, hence one can choose at will
the depth of the resonant well by varying �
, although it also
means a change in the width of the potential. Therefore, one
can build a disordered chain of resonant wells with different
widths and depths that can even be placed at arbitrary dis-
tances from one another with absolutely no correlations in
the sequence, which can be completely random indeed, and
the structure will behave as a transparent potential for all
energies. This is a theoretical model for which one can build
totally random arrays that exhibit a full continuum of ex-
tended states and hence an interval of complete transparency:
the whole positive spectrum. Let us calculate analytically the
distribution of states of these disordered chains in the ther-
modynamic limit. For a zero potential of length L the inte-
grated density of states is trivially N�k�=Lk /�. From this
fact one is led to the conclusion that a resonant well should
provide the spectrum of the system with kLeff


�k� /� avail-
able states with energy less than k. Since all species behave
effectively as zero potentials, the IDOS of the chain per
piece of length �−1 in the thermodynamic limit is just the
composition of the contributions of the different species with
their respective concentrations �c
,

n��� =
1

�
�



c


��
 /��
�
�d


R + d

L�

�Leff

��� , �11�

and the DOS would be obtained, differentiating with respect
to �. Inserting expression �10� into the latter definition one
finally gets

g��� =
1

�
−

2

�
�



c


��
 /��
�
�d


R + d

L� �

j=1

b
−1
j��
 /��

j2��
/��2 + �2 .

�12�

Using the same reasoning the analytical expression for the
DOS can also be straightforwardly obtained when the param-
eters ��
 ,d


R ,d

L obey a continuous distribution. We have

carefully checked how the analytical expression reproduces
exactly the distribution of states calculated numerically via
the functional equation formalism. The DOS for the resonant
chains is a continuous and smooth function without gaps that
does not vanish for zero energy, and it registers relatively
small changes by varying the concentrations or the number
of different resonant wells. In Fig. 3 the tolerance of the
properties of a binary resonant chain are evaluated when
their parameters are deviated from the resonant values. As
can be seen, a small change of the parameters mean the loss
of the full resonant behavior for all energies. Nevertheless
for deviations of order 1%–5% in the dimensionless ampli-
tudes, the efficiency of transmission is still much higher than
for any other nonresonant binary chain composed of wells.
Naturally, for the resonant chains the Lyapunov exponent �
in the thermodynamic limit, corresponding to the inverse of
the localization length, calculated via the functional equa-
tion, vanishes for all energies. It can also be checked that the
inverse participation ratio for finite resonant chains as a func-
tion of the energy is simply a straight line at the value N−1

where N is the number of potentials, as it must be for flat
extended states.

One must not forget that the transmission matrix proposed
for the Pöschl-Teller potential is an approximation, since we
have assumed that at the cutoff distance the asymptotic form
of the states can be used. In fact, this approximation is quite
correct; the error that it entails is almost irrelevant for an
individual potential and the larger the cut-off distance is, the
smaller the error becomes. However, it might happen that
when applying the composition procedure of the potentials to

FIG. 4. �Color online� Transmission probability for random
resonant chains of Pöschl-Teller wells, calculated by solving nu-
merically the Schrödinger equation for the continuum spectrum.
The upper box shows the random potential profile for 100 poten-
tials. For all lengths the chains include three different species with
symmetric cutoff �d


L=d

R=d
�. The parameters are ��
 ,V
 ,d
�c
	:

�1,−2,4�0.4	, �0.75,−6,5.5�0.3	, �0.65,−12,6�0.3	.

FIG. 3. �Color online� Tolerance of the properties of a binary
resonant chain with their parameters. �a� DOS �solid line� and
Lyapunov exponent �dashed line� in the thermodynamic limit. �b�
Transmission patterns for a 1000-atom random sequence. Cases
have been considered where both dimensionless amplitudes are de-
viated 1%, 5%, and 50% from the resonant values V1=−2, V2=−6.
�
=� and d


L=d

R=4/� for both species.
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build a disordered array, these small individual deviations
give rise to an error growing exponentially with the length of
the chain. If it were true, then the behavior of a real continu-
ous composition of Pöschl-Teller units �i.e., the sum of all
the contributions of the potentials centred at different posi-
tions� would be far from the results obtained using our tech-
niques. In particular it would be dramatic for a resonant
chain for which its resonant behavior and the delocalization
of the electronic states could disappear in the real continuous
composition. To show that this exponential error does not
occur, we have calculated the transmission probability of
several random resonant chains with 100, 200, and 400 po-
tentials, by integrating numerically the Schrödinger equation,
via a spatial discretization of the whole continuous potential
of the chain, that is, taking into account the superposition of
all potential wells centered at their respective positions. In
Fig. 4 it can be observed how for very low energies �k
0.05� a small deviation appears from T=1, that for the
longest chain is less than 3�10−2. Although this deviation
seems to increase slightly with the length of the chain, its
effect does not noticeably distort the resonant behavior of the
chain. Then, our composition procedure describes faithfully
the properties of the real continuous composite potential pro-
file.

In summary, we have described a class of random reso-
nant chains with a continuum of delocalized states. The com-
position of resonant Pöschl-Teller wells behaves as a trans-
parent potential for all positive energies. As long as the
dimensionless amplitude of the well belongs to an infinite set
of discrete values that provide the resonant behavior, the rest

of the parameters of the well can be varied randomly, and
therefore the configuration of the resonant chain is quite ver-
satile. And, of course, the delocalization of the electronic
states for positive energies is absolutely independent of the
random or correlated character of the disordered sequence.
Then, at least it is possible to find a theoretical model for
which disordered arrays of potentials exhibit a full con-
tinuum of extended states which is independent of the length
of the system. It is in principle a pure academic model whose
properties are tightly bound to the functional dependence of
the potentials. Hence, its real importance depends up to a
point on the possibility of reproducing experimentally such a
structure. Semiconductor heterostructures may be considered
as applicants for this task. Advances in the epitaxial growing
techniques have made it possible to manipulate the profiles
of the band conduction inside the heterostructure in order to
build, for example, confining parabolic wells. If not now,
perhaps in the future it might be possible to control the grow-
ing process of semiconductor samples in such a manner that
the spatial profile of the band conduction follows the func-
tional dependence of the Pöschl-Teller well and therefore has
the possibility to check experimentally the predicted behav-
ior. The Pöschl-Teller potential shows an ensemble of very
interesting properties which will be described in detail15 and
also an unexpected behavior not anticipated from a disor-
dered system.

We thank E. Diez for useful discussions. We acknowledge
financial support from DGICYT under Contract No.
BFM2002-02609.

*Electronic address: argon@usal.es
1 P. W. Anderson, Phys. Rev. 109, 1492 �1958�.
2 E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ra-

makrishnan, Phys. Rev. Lett. 42, 673 �1979�.
3 P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287

�1985�.
4 S. V. Kravchenko, G. V. Kravchenko, J. E. Forneaux, V. M. Pu-

dalov, and M. D. Orio, Phys. Rev. B 50, 8039 �1994�.
5 D. Shahar et al., Solid State Commun. 107, 19 �1998�; J. Yoon,

C. C. Li, D. Shahar, D. C. Tsui, and M. Shayegan, Phys. Rev.
Lett. 84, 4421 �2000�.

6 J. C. Flores, J. Phys.: Condens. Matter 1, 8471 �1989�; D. H.
Dunlap, H.-L. Wu, and P. W. Phillips, Phys. Rev. Lett. 65, 88
�1990�; A. Bovier, J. Phys. A 25, 1021 �1992�; J. C. Flores and
M. Hilke, ibid. 26, L1255 �1993�; M. Hilke, ibid. 30, L367
�1997�; E. Diez, A. Sánchez, and F. Domínguez-Adame, Phys.
Rev. B 50, 14359 �1994�; J. M. Cerveró and A. Rodríguez, Eur.
Phys. J. B 43, 543 �2005�.

7 A. Sánchez, E. Maciá, and F. Domínguez-Adame, Phys. Rev. B
49, 147 �1994�.

8 J. M. Cerveró and A. Rodríguez, Eur. Phys. J. B 30, 239 �2002�;
32, 537 �2003�.

9 F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81, 3735
�1998�; Physica A 266, 465 �1999�; F. M. Izrailev and A. A.
Krokhin, Phys. Rev. Lett. 82, 4062 �1999�; F. M. Izrailev, A. A.
Krokhin, and S. E. Ulloa, Phys. Rev. B 63, 041102�R� �2001�;
L. Tessieri, J. Phys. A 35, 9585 �2002�.

10 V. Bellani, E. Diez, R. Hey, L. Toni, L. Tarricone, G. B. Parravi-
cini, F. Dominguez-Adame, and R. Gomez-Alcala, Phys. Rev.
Lett. 82, 2159 �1999�.

11 U. Kuhl, F. M. Izrailev, A. A. Krokhin, and H.-J. Stöckmann,
Appl. Phys. Lett. 77, 633 �2000�; A. Krokhin et al., Physica E
�Amsterdam� 13, 695 �2002�.

12 S. Flügge, Practical Quantum Mechanics �Springer-Verlag, Ber-
lin, 1970�.

13 J. W. Dabrowska, A. Khare, and U. P. Sukhatme, J. Phys. A 21,
L195 �1988�.

14 J. M. Cerveró and A. Rodríguez, Phys. Rev. A 70, 052705
�2004�.

15 A. Rodríguez and J. M. Cerveró �unpublished�.

BRIEF REPORTS PHYSICAL REVIEW B 72, 193312 �2005�

193312-4


