Travelling wave solutions of the generalized Benjamin-Bona-Mahony (BBM) equation by the factorization technique

Departamento de Física Fundamental, Área de Física Teórica, Universidad de Salamanca, Salamanca, Spain
Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, Valladolid, Spain
Department of Physics, Faculty of Science, Ankara University, Ankara, Turkey
1. INTRODUCTION TO NONLINEAR EQUATIONS

2. FACTORIZATION OF NONLINEAR EQUATIONS

3. TRAVELLING WAVES OF THE GENERALIZED BBM EQUATION

4. SOLUTIONS OF THE BBM EQUATION

5. SOLUTIONS OF THE MODIFIED BBM EQUATION

6. CONCLUSIONS
The equation describing the propagation of waves on the surface of a shallow channel was derived by J. D. Korteweg and G. de Vries in 1895.

\[u_t - 6uu_x + u_{xxx} = 0 \]

(KdV equation)

\[u(x, t) = \frac{c}{2} \sec h^2 \left[\frac{\sqrt{c}}{2} (x + ct) \right] \]
Let us consider the nonlinear second order ODE

\[
\frac{d^2 W}{d\theta^2} - \beta \frac{dW}{d\theta} + F(W) = 0
\]

\(F(W)\) is an arbitrary function of \(W\) and it can be factorized

\[
\left[\frac{d}{d\theta} - f_2(W, \theta) \right] \left[\frac{d}{d\theta} - f_1(W, \theta) \right] W(\theta) = 0
\]

\[
\frac{d^2 W}{d\theta^2} - \left(f_1 + f_2 + \frac{\partial f_1}{\partial W} W \right) \frac{dW}{d\theta} + f_1 f_2 W - W \frac{\partial f_1}{\partial \theta} = 0
\]
If we find a solution for this factorization problem, it will allow us to write a compatible first order ODE

\[
\begin{align*}
f_1 f_2 &= \frac{F}{W} + \frac{\partial f_1}{\partial \theta} \\
f_2 + \frac{\partial (W f_1)}{\partial W} &= \beta
\end{align*}
\]

that provides a solution to the nonlinear equation.
The generalized Benjamin-Bona-Mahony (BBM) equation

\[u_t + u_x + a u^n u_x + u_{xxt} = 0, \quad n \geq 1 \]

- nonlinearity
- dispersion

n=1 corresponds to the BBM equation

\[u_t + u_x + a u u_x + u_{xxt} = 0 \]

n=2 corresponds to the modified BBM equation

\[u_t + u_x + a u^2 u_x + u_{xxt} = 0 \]
Let us assume that the generalized BBM equation has an exact solution in the form of a travelling-wave

\[u(x, t) = \phi(\xi), \quad \xi = h \, x - \omega \, t \]

where \(h \) and \(\omega \) are real constants to be determined.

\[\phi_{\xi\xi} - \frac{h - \omega}{h^2 \omega} \phi - \frac{a}{(n + 1) \, h \, \omega} \phi^{n+1} = -R \]

Then, we introduce the following linear transformation of the dependent and independent variables

\[\xi = h \, \theta, \quad \phi(\xi) = \left(\frac{c \,(n + 1)}{a} \right)^{1/n} W(\theta) \]

with \(\theta = x - c \, t, \quad c = \omega / h \).
We get the nonlinear second order ODE

$$\frac{d^2 W}{d\theta^2} - W^{n+1} - k W = D,$$

where

$$k = \frac{1 - \frac{d^2 W}{d\theta^2}}{\frac{dW}{d\theta}} - \beta \left(\frac{dW}{d\theta} + F(W) = 0 \right) \right) \right)$$

$$\beta = 0 \quad \text{and} \quad F(W) = -W^{n+1} - k W - D$$

Then the concitency conditions take the form

$$f_1 f_2 = -W^n - k - D W^{-1}$$

$$f_2 = -f_1 - W \frac{\partial f_1}{\partial W}$$
The solutions of this equation are

\[f_1 = \pm \sqrt{\frac{2 W^n}{n + 2}} + k + \frac{2 D}{W} + \frac{C}{W^2} \]

Then, replacing these solutions in the first order ODE, we get

\[\frac{dW}{d\theta} + \sqrt{\frac{2 W^{n+2}}{n + 2}} + k W^2 + 2 DW + C = 0 \]
Another way to get this result is:

$$\frac{d^2 W}{d\theta^2} - W^{n+1} - kW = D.$$

can be integrated

$$(\frac{dW}{d\theta})^2 - \frac{2W^{n+2}}{n + 2} - kW^2 - 2DW = C_0$$

and then can be written as a product of functions

$$\left(\frac{dW}{d\theta} - \sqrt{\frac{2W^{n+2}}{n + 2} + k W^2 + 2DW + C_0}\right)$$

$$\left(\frac{dW}{d\theta} + \sqrt{\frac{2W^{n+2}}{n + 2} + k W^2 + 2DW + C_0}\right) = 0$$
First order ODE

\[\frac{dW}{d\theta} + \sqrt{\frac{2 W^{n+2}}{n+2}} + k W^2 + 2 D W + C = 0 \]

The powers of \(W \) have to be integer numbers between 0 and 4, therefore \(n \in \{-1, 0, 1, 2\} \) for the integrability of first order ODE.

Let us make the transformation \(W = \varphi^p, p \neq 0, 1 \)

\[\left(\frac{d\varphi}{d\theta} \right)^2 = \frac{2}{(n + 2) p^2} \varphi^{2+n p} + \frac{k}{p^2} \varphi^2 + \frac{2 D}{p^2} \varphi^{2-p} + \frac{C}{p^2} \varphi^{2-2p} \]
a) If \(C = D = 0 \), then \(p \in \{-2/n, -1/n, 1/n, 2/n\} \)

\[p = 1/n \]

\[
\left(\frac{d\varphi}{d\theta} \right)^2 = \frac{2n^2}{(n + 2)} \varphi^3 + kn^2 \varphi^2
\]

\[p = -1/n \]

\[
\left(\frac{d\varphi}{d\theta} \right)^2 = \frac{2n^2}{(n + 2)} \varphi + kn^2 \varphi^2
\]
b) If $C \neq 0$, $D = 0$, then $n = 4$

\[p = \frac{1}{2} \]

\[
\left(\frac{d\varphi}{d\theta} \right)^2 = \frac{4}{3} \varphi^4 + 4k \varphi^2 + 4C \varphi
\]

p = -1/2

\[
\left(\frac{d\varphi}{d\theta} \right)^2 = \frac{4}{3} + 4k \varphi^2 + 4C \varphi^3
\]

c) If $C = 0$, $D \neq 0$, then no new solutions appear.
SOLUTIONS OF THE GENERALIZED BBM EQUATION

The particular solutions of the generalized BBM equation

\[u(x, t) = \left(\frac{c(n + 1)}{a} \right)^{1/n} \varphi^p(x - c t) \]

Let us consider a quartic polynomial

\[f(\varphi) = a_0 \varphi^4 + 4a_1 \varphi^3 + 6a_2 \varphi^2 + 4a_3 \varphi + a_4 \]

and the differential equation

\[\left(\frac{d\varphi}{dt} \right)^2 = f(\varphi) \]
In general case the solution of the equation can be expressed in terms of the Weiestrass function $\wp(z; g_2, g_3)$

$$\varphi = \varphi_0 + \frac{1}{4} f'(\varphi_0) \left(\varphi(z; g_2, g_3) - \frac{1}{24} f''(\varphi_0) \right)^{-1}$$

with

$$z = \int_{\varphi_0}^{\varphi} \left[f(t) \right]^{-1/2} dt$$

$$g_2 = a_0 a_4 - 4 a_1 a_3 + 3 a_2^2,$$

$$g_3 = a_0 a_2 a_4 + 2 a_1 a_2 a_3 - a_2^3 - a_0 a_3^2 - a_1^2 a_4.$$
a) If $C = D = 0$, then $p \in \{-2/n, -1/n, 1/n, 2/n\}$

$p = 1/n \quad \left(\frac{d\varphi}{d\theta}\right)^2 = \frac{2 n^2}{(n + 2)} \varphi^3 + k n^2 \varphi^2.$

The roots are: $\varphi_0 = 0$ (twice), $\varphi_0 = -k (n + 2)/2$

and nonzero solutions

$$\varphi = \frac{k(n + 2)}{4} \left(\frac{k n^2 - 12 \varphi(\theta; g_2, g_3)}{k n^2 + 6 \varphi(\theta; g_2, g_3)}\right)$$

$$g_2 = \frac{k^2 n^4}{12}, \quad g_3 = -\frac{k^3 n^6}{216}, \quad \Delta = g_2^3 - 27 g_3^2$$
we have the solution for \(0 < c < 1 \)

\[
\varphi = -\frac{k(n + 2)}{2} \sech^2 \left[\frac{n}{2} \sqrt{k \theta} \right]
\]

\[
= -k(n + 2) \frac{1}{1 + \cosh[n \sqrt{k \theta}]}.
\]

and another one for \(c > 1 \)

\[
\varphi = \frac{k(n + 2)}{2} \sec^2 \left[\frac{n}{2} \sqrt{-k \theta} \right]
\]

\[
= k(n + 2) \frac{1}{1 + \cos[n \sqrt{-k \theta}]}.
\]
Solitary wave solution \(c < 1 \)

\[
u(x, t) = \left(\frac{(n + 1)(n + 2)(c - 1)}{2a} \right)^{1/n} \left(\text{sech}^2 \left[\frac{n}{2} \sqrt{1 - \frac{c}{c}} (x - c t) \right] \right)^{1/n}
\]

Periodic solution \(c > 1 \)

\[
u(x, t) = \left(\frac{(n + 1)(n + 2)(1 - c)}{2a} \right)^{1/n} \left(\text{sec}^2 \left[\frac{n}{2} \sqrt{\frac{c - 1}{c}} (x - c t) \right] \right)^{1/n}
\]
b) If $C \neq 0$, $D = 0$, then $n = 4$

$p = \frac{1}{2}$

\[
\left(\frac{d\varphi}{d\theta} \right)^2 = \frac{4}{3} \varphi^4 + 4k \varphi^2 + 4C \varphi.
\]

\[
\varphi = \frac{3 \varphi_0 \varphi(\theta; g_2, g_3) + 2 \varphi_0^3 + 5k \varphi_0 + 3C}{3 \varphi(\theta; g_2, g_3) - 2\varphi_0^2 - k}
\]

\[
u(x, t) = \left(\frac{c(n + 1)}{a} \right)^{1/n} \varphi^p(x - ct)
\]
SOLUTIONS OF THE BBM and MODIFIED BBM EQUATION

In this section we will consider the solutions obtained for \(n = 1, 2 \) with the integration constant \(D \neq 0 \)

\[
\frac{d^2 W}{d\theta^2} - W^{n+1} - k W = D.
\]

Let us make a simple displacement on the

\[
W(\theta) = U(\theta) + \delta
\]

\[
\frac{d^2 U}{d\theta^2} - \left(U^{n+1} + \frac{(n + 1)!}{n!} U^n \delta + \frac{(n + 1)!}{2(n - 1)!} U^{n-1} \delta^2 + ... + \frac{(n + 1)!}{n!} U \delta^n \right) = k U
\]

where the integration constant was chosen

\[
D_n = -k \delta - \delta^{n+1}
\]
a) BBM equation \((n = 1)\)

\[
\frac{d^2 U}{d\theta^2} - U^2 + (2\delta - k)U = 0
\]

where

\[
D_1 = -k\delta - \delta^2
\]

The solutions of the second order ODE for all roots

\[
U(\theta) = -\frac{5(k - 2\delta)U_0 + 4U_0^2 + 12U_0\varphi(\theta; g_2, g_3)}{(k - 2\delta) + 2U_0 - 12\varphi(\theta; g_2, g_3)}
\]

\[
g_2 = \frac{(k - 2\delta)^2}{12}, \quad g_3 = -\frac{(k - 2\delta)^3}{216} - \frac{c_1}{36}
\]

Then the solutions of the BBM equation

\[
u(x, t) = \frac{2c}{a}(U(\theta) + \delta)
\]
Choosing $C_1 = 0$, nontrivial solutions for the nonzero root

$$U_0 = -\frac{3(k - 2\delta)}{2}.$$

$$U(\theta) = 6 \phi(\theta + \omega; g_2, g_3) - \frac{(k - 2\delta)}{2}$$

$$g_2 = \frac{(k - 2\delta)^2}{12}, \quad g_3 = -\frac{(k - 2\delta)^3}{216}$$

Discriminant is equal to zero: $\Delta = 0$
Dark soliton solution

\[
 u(x, t) = \frac{3(c - 1)}{2a} \tanh^2 \left[\frac{1}{2} \sqrt{\frac{c - 1}{2c}} (x - c t) \right] \quad c > 1
\]
Periodic singular solutions

\[u(x, t) = \frac{3(1 - c)}{2a} \tan^2 \left[\frac{1}{2} \sqrt{\frac{1 - c}{2c}} (x - c t) \right] \quad c < 1 \]
Choosing $C_1 = 0,$ and $\delta = 0,$ then $\Delta = 0$

Solitary wave (soliton) solution

Periodic solution
b) Modified BBM equation \((n = 2)\)

\[
\frac{d^2U}{d\theta^2} - (U^3 + 3 \delta U^2 + (\delta^2 + k)U) = 0 \quad \text{with} \quad D_2 = -k \delta - \delta^3
\]

\[
U(\theta) = \frac{5 K U_0 + 3 U_0^3 + 12 \delta U_0^2 + 12 U_0 \varphi(\theta; g_2, g_3)}{12 \varphi(\theta; g_2, g_3) - k - 3 (\delta + U_0)^2}
\]

\[
g_2 = \frac{K^2}{12} + \frac{C_2}{2}, \quad g_3 = -\frac{K^3}{216} + \frac{C_2 K}{12} - \frac{C_2 \delta^2}{4}
\]

The solution of the modified BBM equation

\[
u(x, t) = \sqrt{\frac{3c}{a}} (U(\theta) + \delta)
\]
Choosing $C_2 = k^2/2; \quad \delta = 0$, then $\Delta = 0$

For $c > 1$, the kink type solution

$$u(x, t) = \sqrt{\frac{3(c - 1)}{2a}} \tanh \left[\sqrt{\frac{c - 1}{2c}} (x - ct) \right]$$
For \(c < 1 \), the periodic kink type singular solution

\[
 u(x, t) = \sqrt{\frac{3(1 - c)}{a}} \tan \left[\sqrt{\frac{1 - c}{2c}} (x - c t) \right]
\]
The trivial choice $C_2 = 0$ and $\delta = 0$, then $\Delta = 0$

Solitary wave (soliton) solution

Periodic solution
CONCLUSIONS

- We have obtained particular solutions as well as general solutions of the generalized BBM, modified-BBM and BBM equations in terms of elliptic functions without making any ansatz.

- The factorization technique is more systematic than others previously used for the analysis of these equations. This technique gives directly solutions of the BBM equations in terms of elliptic functions.

- In this study, we have more general solutions and recovered all the solutions reported before.

To appear in CS&F (arXiv:0707.0760v2 [nlin.SI])